yielding the exo (4) and endo (2) sulfides respectively. The cyclohexane residue is in the chair conformation with a cis junction to the furanone ring. The furan ring has an envelope conformation with four of the atoms being coplanar [max. deviation 0.015 (5) \AA] and the fifth atom $[\mathrm{C}(5 A), \mathrm{C}(5 B)] 0.47$ (1) \AA out of the plane.

A number of hexahydrobenzofuranone derivatives have been studied by X-ray diffraction. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}{ }^{*}$ (Burnett \& Rossmann, 1971) shows a chair cyclohexane with trans ring junction and also shows the disparate $\mathrm{C}-\mathrm{O}$ distances in the furanone rings observed in the present case. The $\mathrm{C}-\mathrm{O}$ bond adjacent to the carbonyl group is very much shorter than the other $\mathrm{C}-\mathrm{O}$ bond. A chair conformation with a cis junction is found in $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \dagger$ (Andriamialisoa, Fetizon, Hanna, Pascard \& Prange, 1984).

We acknowledge a CASE award from May and Baker (CLG) and financial support from the University

[^0]of Southampton (LRG). We thank Dr M. B. Hursthouse for the X-ray data collection on the QMC/SERC diffractometer.

References

Andriamlalisoa, R. Z., Fetizon, M., Hanna, I., Pascard, C. \& Prange, T. (1984). Tetrahedron, 40, 4285-4295.
Baker, R., Gibson, C. L., Swain, C. J. \& Tapolczay, D. J. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 1509-1516.

Burnett, R. M. \& Rossmann, M. G. (1971). Acta Cryst. B27, 1378-1387.
Gibson, C. L. (1983). PhD Thesis. Univ. of Southampton.
Grieco, P. A. \& Reap, J. J. (1974). Tetrahedron Lett. pp. 1097-1 100.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1986). C42, 1589-1591

2-Chlorobiphenyl-4-carbonitrile

By H. H. Sutherland, Z. Ali-Adib and S. Basu
Physics Department, The University of Hull, Hull HU6 7RX, England

(Received 3 April 1986; accepted 29 May 1986)

Abstract

C}_{13} \mathrm{H}_{8} \mathrm{CIN}, M_{r}=213 \cdot 7\), monoclinic, $P 2_{1} / c$, $a=14.31$ (2), $\quad b=6.96$ (3), $\quad c=11.67$ (2) $\AA, \quad \beta=$ $110.1(2)^{\circ}, \quad V=1091.5 \AA^{3}, \quad Z=4, \quad D_{m}=1.33, \quad D_{x}$ $=1.30 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{CuK} \mathrm{\alpha})=1.5418 \AA, \mu=2.7 \mathrm{~mm}^{-1}$, $F(000)=440, T=293 \mathrm{~K}, R=0.066$ for 1012 observed densitometer-measured equi-inclination Weissenberg data. The average $\mathrm{C}-\mathrm{C}$ bond in the phenyl rings is $1.396 \AA$. The molecule is non-planar; the angle between the phenyl rings is $51.9(1)^{\circ}$; the $\mathrm{C}-\mathrm{Cl}$ bond is 1.743 (7) \AA; the $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ bonds are 1.439 (13) and 1.149 (15) \AA, the $\mathrm{C}-\mathrm{C}$ bond making an angle of $3.4(1)^{\circ}$ with the phenyl plane.

Introduction. The structure determination of the title compound forms part of an investigation into liquidcrystal compounds and their chemical precursors.

Experimental. D_{m} measured by flotation in aqueous cadmium n-dodecatungstoborate. Pale-yellow opaque crystals used in data collection, dimensions $0.09 \times$ 0.08×0.28 and $0.17 \times 0.07 \times 0.15 \mathrm{~mm}$, respectively, for c - and b-axis Weissenberg data. 1070 reflections measured by the SERC Microdensitometer Service, Daresbury Laboratory, from multiple-film photographs using $\mathrm{Cu} K \alpha$ radiation. $-15 \leq h \leq 15 ; 0 \leq k \leq 8 ; 0 \leq$ $l \leq 9 ; 1012$ unique observed reflections, $R_{\text {int }}=0.05$. Structure solved by Patterson synthesis and refined (on F) by blocked-matrix least squares with anisotropic thermal parameters for the non-H atoms; H -atom positions, initially obtained from a difference synthesis and placed at geometrically reasonable positions, refined with constrained $\mathrm{C}-\mathrm{H}$ bond distances and isotropic thermal parameters; final $R=0.066$, unit weights, $w R=0.066 .(\Delta / \sigma)_{\max }$ in final refinement cycle 0.004 for positional and 0.013 for thermal parameters. Max. and min. heights in final $\Delta \rho$ map +0.6 and -0.3 e \AA^{-3}. Scattering factors from International Tables for X-ray Crystallography (1974). Computer programs used: SHELX76 (Sheldrick, 1976) and local programs supplied by HHS and Drs C. Morgan and M. J. Mottram.

^[© 1986 International Union of Crystallography]

Discussion. Table 1* gives atomic parameters and Table 2 bond lengths and angles. The atomic numbering is shown in Fig. 1. The phenyl rings are planar to within $0.017 \AA$, with an average $\mathrm{C}-\mathrm{C}$ bond of $1.396 \AA$. The $\mathrm{Cl}-\mathrm{C}(2)$ bond of 1.743 (7) \AA is in good agreement with the values of 1.741 (6) and 1.745 (6) \AA found in 2-chlorobiphenyl-4'-carbonitrile (Sutherland \& Ali-Adib, 1986) and 4 -acetyl- 3 '-chlorobiphenyl (Sutherland, Rawas \& Mottram, 1985), respectively, and larger than the $1.723(10)$ and $1.725(10) \AA$ in 3 -chlorobiphenyl-4-carbonitrile (Sutherland \& Rawas, 1984) and 2-chlorobiphenyl-4-carboxylic acid (Sutherland \& Hoy, 1969). The Cl atom is displaced by 0.08 (1) \AA from the phenyl ring, $\mathrm{C}(7)$ is displaced by 0.009 (8) $\AA, \mathrm{C}(13)$ by 0.09 (1) \AA and N by 0.14 (1) \AA with the $\mathrm{C}(4)-\mathrm{C}(13)$ bond being inclined at 3.4 (1) ${ }^{\circ}$ to the phenyl ring. The bond lengths of 1.439 (13) \AA for $\mathrm{C}(4)-\mathrm{C}(13)$ and $1 \cdot 149$ (15) \AA for $\mathrm{C}(13)-\mathrm{N}$ are in good agreement with the values of 1.441 (10), $1 \cdot 131(10), 1.438(14)$ and $1 \cdot 140(16) \AA$ for the corresponding bonds found in 2-chlorobiphenyl-4'carbonitrile and in 3-chlorobiphenyl-4-carbonitrile, respectively.

The $\mathrm{C}(1)-\mathrm{C}(7)$ bond, 1.498 (11) \AA, is in good agreement with the value of 1.486 (12) \AA in 3 -chloro-biphenyl-4-carbonitrile, but slightly larger than 1.466 (9) \AA found for the corresponding bond length in 2-chlorobiphenyl-4'-carbonitrile. The angles $\mathrm{C}(3)-$ $\mathrm{C}(4)-\mathrm{C}(5), \quad \mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(13), \quad \mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(13)$, and $\mathrm{C}(4)-\mathrm{C}(13)-\mathrm{N}$ (Table 2) compare with the corresponding angles of $118.5(9), 120.5(9), 121 \cdot 0(10)$ and $178.9(13)^{\circ}$ found in 3-chlorobiphenyl-4-carbonitrile, and with $119.2(10), \quad 119.9(9), \quad 120.9(9)$ and 178.9 (14) ${ }^{\circ}$ found in molecule B of 4^{\prime}-bromobiphenyl4 -carbonitrile (Kronebusch, Gleason \& Britton, 1976).

The angle between the phenyl rings about the central $\mathrm{C}-\mathrm{C}$ bond, φ_{1}, of $51.9(1)^{\circ}$ is similar to the value of $52.3(1)^{\circ}$ found in 2-chlorobiphenyl-4'-carbonitrile, but slightly larger than the 49.2° found in 4 -acetyl2 '-chlorobiphenyl (Sutherland \& Hoy, 1968), and, as would be expected, considerably larger than the $31.0(3)^{\circ}$ in 3 -chlorobiphenyl-4-carbonitrile. The axis of the molecule, defined by $\mathrm{C}(1), \mathrm{C}(4), \mathrm{C}(7), \mathrm{C}(10)$, deviates from collinearity. Not only is there a rotation φ_{1} about the $\mathrm{C}(1)-\mathrm{C}(7)$ bond but also $\varphi_{2}=0.3(3)^{\circ}$ of the ring $\mathrm{C}(1)-\mathrm{C}(6)$ about an axis in its plane through $\mathrm{C}(1)$ perpendicular to $\mathrm{C}(1)-\mathrm{C}(7)$, and $\varphi_{3}=2.4(3)^{\circ}$, the corresponding angle of rotation for ring $\mathrm{C}(7)-$ $\mathrm{C}(12)$. The shortest intermolecular contacts are 3.387 (14) \AA between $\mathrm{C}(13)$ and $\mathrm{N}(1)$ at $(-x,-y$,

[^2]$1-z), 3.449(16) \AA$ between $C(3)$ and $N(1)$ at $(-x$, $1-y, 1-z$) and 3.476 (13) \AA between $\mathrm{N}(1)$ and $\mathrm{N}(1)$ at $(-x,-y, 1-z)$.

Table 1. Fractional coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{4}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=\left(U_{11} U_{22} U_{33}\right)^{1 / 3}$.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{Cl}(1)$	2838 (2)	6292 (3)	3491 (2)	700 (13)
C(1)	2290 (5)	2684 (9)	2594 (6)	340 (40)
C(2)	2125 (5)	4209 (9)	3293 (7)	457 (42)
C(3)	1433 (5)	4110 (9)	3879 (6)	483 (44)
C(4)	863 (5)	2443 (10)	3794 (6)	438 (44)
C(5)	1022 (5)	886 (8)	3122 (6)	472 (44)
C(6)	1719 (5)	1028 (9)	2548 (6)	457 (43)
C(7)	3039 (5)	2719 (10)	1958 (6)	353 (43)
C(8)	3727 (5)	1222 (10)	2106 (6)	547 (46)
C(9)	4413 (5)	1208 (11)	1504 (7)	621 (54)
C(10)	4406 (6)	2639 (13)	671 (7)	593 (60)
C(11)	3714 (6)	4128 (11)	523 (6)	602 (54)
C(12)	3045 (5)	4182 (9)	1138 (6)	495 (47)
C(13)	101 (6)	2352 (10)	4337 (8)	549 (52)
$\mathrm{N}(1)$	-502 (6)	2301 (10)	4781 (8)	905 (59)

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Cl}-\mathrm{C}(2)$	1.743 (7)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1$	1.403 (10)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.408 (10)	$\mathrm{C}(8)-\mathrm{C}(9) \quad 1$	$1 \cdot 389$ (12)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.384 (12)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1$	1.390 (12)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.402 (9)	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1$	1.403 (12)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.401 (10)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1$	1.380 (12)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.383 (11)	$\mathrm{C}(7)-\mathrm{C}(12) \quad 1$	1.400 (10)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.403 (9)	$\mathrm{C}(4)-\mathrm{C}(13) \quad 1$	1.439 (13)
C (1)-C(7)	1.498 (11)	$\mathrm{C}(13)-\mathrm{N} \quad 1$	1.149 (15)
$\mathrm{Cl}-\mathrm{C}(2)-\mathrm{C}(1)$	119.7 (6)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	120.1 (6)
$\mathrm{Cl}-\mathrm{C}(2)-\mathrm{C}(3)$	117.5 (5)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	124.5 (6)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120 \cdot 2$ (6)	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	121.2 (6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.5 (7)	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$	121.5 (6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.9 (6)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	122.1 (7)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	123.2 (6)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.9 (7)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	115.4 (7)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	116.7 (8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.7 (6)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$) 122.9 (7)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(13)$	121.0 (7)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	120.2 (6)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(13)$	120.4 (6)	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	117.1 (7)
$\mathrm{N}-\mathrm{C}(13)-\mathrm{C}(4)$	179.0 (8)		

Fig. 1. The arrangement of the molecules in the unit cell viewed along \mathbf{b}.

The authors thank Professor G. W. Gray for providing the crystals and Mr C. Jackson, Daresbury Laboratory, for intensity measurements.

References

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Kronebusch, P., Gleason, W. B. \& Britton, D. (1976). Cryst. Struct. Commun. 5, 17-20.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sutherland, H. H. \& Ali-Adib, Z. (1986). In preparation.
Sutherland, H. H. \& Hoy, T. G. (1968). Acta Cryst. B24, 1207-1213.
Sutherland, H. H. \& Hoy, T. G. (1969). Acta Cryst. B25, 1013-1022.
Sutherland, H. H. \& Rawas, A. (1984). Acta Cryst. C40, 830-832.
Sutherland, H. H., Rawas, A. \& Mottram, M. J. (1985). Acta Cryst. C41, 926-927.

Acta Cryst. (1986). C42, 1591-1594

Structure of an ent-Beyerene Diterpene

By William H. Watson* and Iraj Tavanaiepour
Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA

and Esther F. Lee and Tom J. Mabry
Department of Botany, The University of Texas, Austin, Texas 78713, USA

(Received 13 February 1986; accepted 11 June 1986)

Abstract

C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}, M_{r}=320.48\), monoclinic, $P 2_{1}$, $a=17.623$ (4), $\quad b=7.429$ (1), $\quad c=7.203$ (1) $\AA, \quad \beta=$ $100.46(2)^{\circ}, V=927.4$ (3) $\AA^{3}, Z=2, D_{x}=1 \cdot 148, D_{m}$ (flotation) $=1.142 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{CuK} \mathrm{\alpha})=1.54178 \AA, \mu$ $=5.566 \mathrm{~cm}^{-1}, F(000)=352, T=295 \mathrm{~K}, R=0.048$ for 1301 reflections. The molecule is a beyerene-type tetracyclic diterpene [9,11,17-trihydroxy-ent-beyer-15(16)-ene; Chemical Abstracts name ($5 R, 8 R, 9 R$,$10 R, 11 S, 13 S$)-13-(hydroxymethyl)-17-norkaur-15-ene9,11 -diol]. The molecule contains three trans-fused six-membered rings in slightly distorted chair conformations, a bridging ethylene moiety forming a five-membered ring in an envelope conformation and a seven-membered ring in a boat conformation. There are three relatively long $\mathrm{C}-\mathrm{C}$ bonds of 1.569 (6), 1.572 (5), and 1.595 (5) \AA which agree well with the values $1.562,1.573$ and $1.595 \AA$ calculated by molecular-mechanics techniques. There is one $\mathrm{C}-\mathrm{C}$ bond of 1.488 (9) \AA which is statistically equivalent to the value in reference compounds but is 0.041 (9) \AA shorter than the calculated value.

Introduction. As part of a chemotaxonomic study of the genus Helianthus, the terpenoid constituents of Helianthus laciniatus A. Gray were reinvestigated. A previous study of this species reported five partially characterized tetracyclic diterpenes (Ortega, Ayala, Guerrero \& Romo de Vivar, 1972). Comparison of the

[^3]physical properties of the ent-beyerene (1) indicated that it was not one of the compounds previously isolated. In order to confirm the substitution pattern and relative configuration based upon ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR the structure was determined by X-ray diffraction. Also, the ent-beyerenes provide another opportunity to evaluate the use of molecular mechanics (MM) in reproducing natural-product structures and conformations.

Experimental. A colorless crystal of dimensions $0.52 \times$ $0.41 \times 0.31 \mathrm{~mm}$, Syntex $P 2_{1}$ diffractometer, $\theta: 2 \theta$ scan, variable scan rate, $5 \cdot 1 \leq 2 \theta \leq 114 \cdot 7^{\circ}$, graphite-monochromated $\mathrm{Cu} K \alpha$ radiation; lattice parameters from a least-squares refinement of 15 reflections ($12.6 \leq 2 \theta \leq 65.6^{\circ}$), angles measured by a centering routine associated with the diffractometer, systematic absences ($0 k 0, k=2 n+1$) consistent with space group $P 2_{1}$, Laue symmetry 2, a monitored reflection, 200, showed no significant change in intensity; 1409 independent reflections measured ($0 \leq h \leq 19$, $0 \leq k \leq 8,-7 \leq l \leq 7$) with 1312 intensities greater than $3 \sigma(I)$, slow scan measurement of 54 equivalent reflections ($R_{\text {int }}=0.014$), Lorentz-polarization corrections applied, consideration of crystal shape, transmission factors and $R_{\text {int }}$ resulted in neglect of absorption; direct methods (MULTAN78: Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) revealed the positions of all non-hydrogen atoms. Least-squares refinement followed by a difference Fourier synthesis © 1986 International Union of Crystallography

[^0]: * Hexahydro-6-hydroxy-6,7a-dimethyl-2(3H)-benzo[b]furanone.
 \dagger Hexahydro-3-(6,6-dimethyl-3-oxocyclohex-1-en-5-yl)-4-methyl-4-vinyl-2(3H)-benzo[b]furanone.

[^2]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, intermolecular contact distances and the results of mean-plane calculations have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43123 (22 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^3]: * To whom correspondence should be addressed.

